Cobalt(III) Complexes with Quadridentate Ligands. XI.¹⁾ The Preparation and Properties of *cis-α*-Isomer of the Salicylato(triethylenetetramine)cobalt(III) Complex

Yoshihisa Yamamoto,* Eiko Toyota, Toyo Kumon, and Haruo Sekizaki Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02 (Received June 10, 1991)

Synopsis. *cis-*α-Salicylato(triethylenetetramine)cobalt(III) chloride, *cis-*α-[Co(sal)trien]Cl, has been isolated and characterized by means of both analytical and spectroscopic methods.

In this series we have described the preparation and properties of isomers of salicylato-,²⁾ thiosalicylato-,³⁾ salicylaldehydato-,^{1,4)} or 8-quinolinolato(triethylenetetramine)cobalt(III) complexes.⁵⁾ The cis- β_1 and β_2 -isomers of the complexes have been obtained from a reaction mixture of cis- α -[CoCl₂trien]Cl, Ag₂O, and organic compounds.¹⁻⁵⁾ However, the cis- α -isomer of the complexes has not yet been obtained, because the treatment of the cis- α -[CoCl₂trien]Cl in neutral or alkaline aqueous solutions results in quantitative isomerization to the cis- β -triethylenetetramine configuration.^{2,6)}

Now, we have isolated cis- α -salicylato(triethylenetetramine)cobalt(III) chloride, cis- α -[Co(sal)trien]Cl, in methanol by a direct preparation method. The present paper deals with the preparation and properties of cis- α -[Co(sal)trien]Cl.

Experimental

Measurements. The electric conductivity was determined by the use of a CM-40S conductivity meter (TOA) in an aqueous solution at room temperature. The IR spectrum was recorded in KBr disks with a 270-30 spectrophotometer (Hitachi). The visible absorption spectrum was recorded in water with a Shimadzu UV-210 recording spectrophotometer. The ¹H and ¹³C NMR spectra were recorded with a JNM-FX90Q FT NMR spectrometer (JEOL). The melting point was measured on an MP-500D apparatus (Yanako).

Preparation of Complexes. $cis-\alpha$ -Salicylato(triethylenetetramine)cobalt(III) Chloride (1) and the Corresponding $cis-\beta_1$ - (2) and β_2 -Isomers²⁾ (3): A methanol solution (60 cm³) of triethylenetetramine (7.31 g, 50.0 mmol) and sodium salicylate (8.0 g, 50.0 mmol) were added to a methanol solution (30 cm³)

of CoCl₂·6H₂O (11.9 g, 50.0 mmol). Air was bubbled into the solution for 5 h, and the reaction mixture was stirred at 50 °C for 7 h. It was then concentrated on a rotary evaporator. The precipitated russet complex ($cis-\beta_2$ -isomer) was filtered (3.55 g), and the filtrate was concentrated. Then, the separated NaCl was removed, and the filtrate was concentrated. The isolation of complex 1 in the filtrate was achieved by column chromatography on alumina. Upon elution with MeOH-EtOH (1:1), the effluent of the first russet band was collected, concentrated, and dried. The dried product (mixture of cis- α and β_2 -isomers) of 4.02 g was dissolved in 60 cm³ of hot methanol, and cooled in an icebox. The precipitated russet complex, $cis-\alpha$ -[Co(sal)trien]Cl (1), was filtered and recrystallized from methanol. Yield: 2.56 g (13.6%). Found: C, 41.28; H, 5.77; N, 14.61; Cl, 9.64%. Calcd for CoC₁₃H₂₂N₄O₃Cl (MW 376.73): C, 41.44; H, 5.89; N, 14.88; Cl, 9.41%. Λ =91 S cm² mol⁻¹ in water. Mp 234– 235 °C. IR 1040, 1065 cm⁻¹ (NH₂ twisting). Absorption spectrum (H₂O): 330 nm (ϵ =2900), 513 (205). ¹H NMR $(1.8 \text{ mol dm}^{-3} D_2SO_4) \delta = 2.4 - 3.7 (12H, CH_2); 5.00 (1H, NH_2),$ 5.27 (3H, NH₂); 5.99 (1H, NH), 6.31 (1H, NH); 6.6—7.9 (4H, salicylato). ${}^{13}\text{C NMR}$ (D₂O) δ =42.8 (NH₂- side CH₂), 53.9, 54.7, 55.8, 56.0 (NH- side CH₂); δ =117.2 (C-3), 117.9 (C-1), 124.1 (C-5), 132.7 (C-6), 134.6 (C-4), 167.6 (C-2), 174.2 (C-7).

Bull. Chem. Soc. Jpn., 65, 283-285 (1992)

Complexes 2 and 3 were obtained from a reaction mixture of an aqueous solution (100 cm³) of trien (7.31 g, 50.0 mmol), sodium salicylate (8.0 g, 50.0 mmol), and $CoCl_2 \cdot 6H_2O$ (11.9 g, 50.0 mmol) according to the preparation method of 1; complex 1, however, could not be obtained from the reaction mixture. Yields: 0.9 g (4.6%) for 2, 6.53 g (33.1%) for 3.

Results and Discussion

The octahedral salicylato(triethylenetetramine)cobalt(III) complex exists in three isomeric forms: $cis-\alpha$, $cis-\beta_1$, and $cis-\beta_2$, as shown in Fig. 1.

cis-α-Salicylato(triethylenetetramine)cobalt(III) chloride, cis-α-[Co(sal)trien]Cl (1), has been obtained from a reaction mixture of CoCl₂·6H₂O, trien, and sodium salicylate by air oxidation in methanol at

Fig. 1. The cis- α , β_1 , and β_2 configurations of salicylato(triethylenetetramine)-cobalt(III) complex.

pH=7.6. Although $cis-\beta_1$ -[Co(sal)trien]Cl·H₂O (2) and $cis-\beta_2$ -[Co(sal)trien]Cl·H₂O (3) were obtained from a reaction mixture of CoCl₂·6H₂O, trien, and sodium salicylate by air oxidation in an aqueous solution, complex 1 could not be obtained from the reaction mixture. Thus, the $cis-\alpha$ -isomer is formed in methanol.

The color of 1 is russet. The melting point of 1 is 234—235 °C. The electric conductivity of 1 in an aqueous solution is 91 S cm² mol⁻¹. Complex 1 is very soluble in water and dimethyl sulfoxide, and soluble in alcohols, but insoluble in other common organic solvents.

The absorption spectrum of 1 was measured in water. The absorption bands at 330 and 513 nm were assigned to

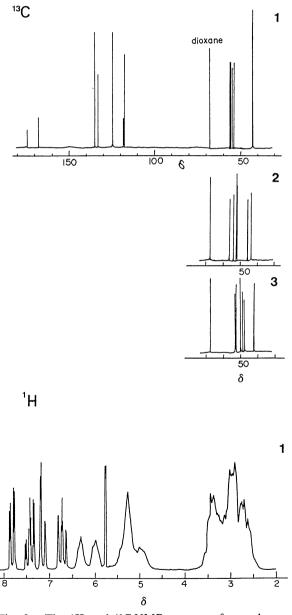


Fig. 2. The ¹H and ¹³C NMR spectra of complexes 1—3. 1: cis-α-[Co(sal)trien]Cl, 2: cis-β₁-[Co(sal)trien]Cl·H₂O, 3: cis-β₂-[Co(sal)trien]Cl·H₂O. Solvent and standard. ¹H: 1.8 mol dm⁻³ D₂SO₄, internal DSS. ¹³C: D₂O, internal dioxane (δ=67.4).

the absorption of salicylato and the first d-d absorption bands, respectively. The ^{13}C NMR spectrum of 1 was measured in D₂O (Fig. 2). Seven signals at $\delta = 117-175$ were assigned to the carbons of the coordinated salicylato ligand by a comparison with those²) of 2 and 3. The signals at $\delta = 42.8$ and at $\delta = 53-56$ were assigned to the NH₂- and NH- side methylene carbons, $^{7)}$ respectively. The ^{1}H NMR spectrum of 1 was measured in 1.8 mol dm $^{-3}$ D₂SO₄ (Fig. 2). The signals at $\delta = 2.4-3.7$ (12H), $\delta = 4.7-5.5$ (4H), and $\delta = 5.8-6.5$ (2H) were assigned to the methylene, primary amine, and secondary amine protons of the coordinated trien ligand, respectively, by comparisons with those²) of 2 and 3. The lowest field signals at $\delta = 6.6-7.9$ (4H) were assigned to the coordinated salicylato protons.

The IR spectrum of 1 showed two strong absorptions at 1040 and 1065 cm⁻¹ in the NH₂ twisting region (990—1100 cm⁻¹), whereas those²⁾ of 2 and 3 showed four signals. This suggests that complex 1 can be assigned to the cis- α -triethylenetetramine configuration.⁸⁾ In the ¹³C NMR spectrum (Fig. 2), the signal of two NH₂- side methylene carbons overlapps, and the difference

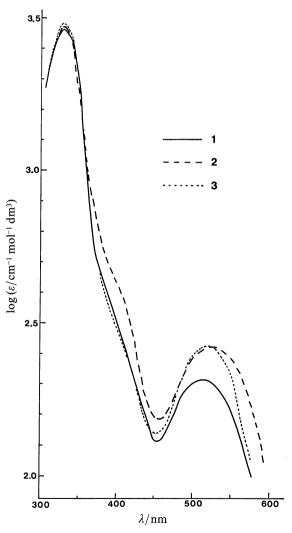


Fig. 3. The absorption spectra of complexes 1—3 in water. 1: $cis-\alpha$ -[Co(sal)trien]Cl, 2: $cis-\beta_1$ -[Co(sal)trien]Cl·H₂O, 3: $cis-\beta_2$ -[Co(sal)trien]Cl·H₂O.

 $(\Delta \delta = 2.1)$ of the chemical shifts of the NH- side methylene carbons of 1 is smaller than that² ($\Delta \delta = 4.7 \pm 0.3$) of 2 and 3, i.e., the spectrum of 1 is symmetric in contrast to those of 2 and 3. In the ¹H NMR spectrum, the chemical shifts (δ =4.7—5.5) of the proton signal of the NH₂ group of the coordinated trien ligand of 1 are at a lower field than those²⁾ (δ =4.0—5.4) of 2 and 3, i.e., the NH₂ group is considered to be at a position cis to the carboxyl or phenoxyl oxygen of the coordinated salicylato ligand, which is more electronegative^{2,9)} than the nitrogen of the NH₂ group of coordinated trien ligand. The chemical shifts (δ =5.99 and 6.30) of the proton signals of the NH group are at a higher field than those² (δ =6.1—6.7) of 2 and 3, i.e., the NH group of 1 is considered to be at a position trans to the carboxyl or phenoxyl oxygen of the salicylato ligand. The spectral patterns of the methylene and amine proton signals of the trien ligand of 1 are very close to those of $cis-\alpha$ -[Co(gly)trien]²⁺, which was examined by X-ray diffraction. 10) Thus, complex 1 has been assigned to $cis-\alpha$ -[Co(sal)trien]Cl.

The different properties of between complex 1 and complexes 2 and 3 are as follows: i) complex 1 could not be obtained from a reaction mixture of an aqueous solution, but complexes 2 and 3 could be obtained from the reaction mixture. Complex 1 could not isomerize to 2 and 3 in neutral or alkaline aqueous solution and alcohols, but complex 2 isomerizes to 3. ii) the first

absorption band in the absorption spectrum of 1 differs remarkably from those²⁾ of 2 and 3, i.e., the ϵ value (205) of 1 is smaller than those (270) of 2 and 3, and the band (513 nm) of 1 appears at a shorter wavelength than those (520—530 nm) of 2 and 3 (Fig. 3).

References

- 1) Part X: E. Toyota and Y. Yamamoto, Bull. Chem. Soc. Jpn., 62, 3817 (1989).
- 2) Y. Yamamoto and E. Toyota, Bull. Chem. Soc. Jpn., 52, 2540 (1979).
- 3) Y. Yamamoto, K. Yoshii, E. Toyota, and K. Konno,
- Bull. Chem. Soc. Jpn., 62, 724 (1989).
 4) Y. Yamamoto, E. Toyota, and S. Tsukuda, Bull. Chem. Soc. Jpn., 58, 1595 (1985).
- 5) Y. Yamamoto, E. Toyota, and Y. Yamamoto, Bull. Chem. Soc. Jpn., 56, 2721 (1983).
- 6) E. Kyuno, L. J. Boucher, and J. C. Bailar, Jr., J. Am. Chem. Soc., 87, 4458 (1965).
- 7) Y. Yamamoto, H. Kudo, and E. Toyota, Bull. Chem. Soc. Jpn., 56, 1051 (1983).
- 8) D. A. Buckingham and D. Jones, *Inorg. Chem.*, 4, 1387 (1965).
- Y. Yamamoto, Bull. Chem. Soc. Jpn., 51, 2897 (1978).
- 10) B. F. Anderson, J. D. Bell, D. A. Buckingham, P. J. Cresswell, G. J. Gainsford, L. G. Marzilli, G. B. Robertson, and A. M. Sargeson, Inorg. Chem., 16, 3233 (1977).